Pure Mathematics 3

Exercise 3A

1 a 300° is in the 4th quadrant
$\sec 300^{\circ}=\frac{1}{\cos 300^{\circ}}$
In 4 th quadrant \cos is +ve , so $\sec 300^{\circ}$ is +ve .
b 190° is in the 3 rd quadrant $\operatorname{cosec} 190^{\circ}=\frac{1}{\sin 190^{\circ}}$
In 3 rd quadrant \sin is $-v e$, so $\operatorname{cosec} 190^{\circ}$ is -ve .
c 110° is in the 2 nd quadrant
$\cot 110^{\circ}=\frac{1}{\tan 110^{\circ}}$
In the 2 nd quadrant \tan is $-v e$, so $\cot 110^{\circ}$ is -ve .
d 200° is in the 3 rd quadrant \tan is +ve in the 3 rd quadrant, so $\cot 200^{\circ}$ is +ve .
e 95° is in the 2 nd quadrant \cos is -ve in the 2 nd quadrant, so $\sec 95^{\circ}$ is -ve .

2 a $\sec 100^{\circ}=\frac{1}{\cos 100^{\circ}}=-5.76$ (3 s.f.)
b $\operatorname{cosec} 260^{\circ}=\frac{1}{\sin 260^{\circ}}=-1.02$ (3 s.f.)
c $\operatorname{cosec} 280^{\circ}=\frac{1}{\sin 280^{\circ}}=-1.02$ (3 s.f.)
d $\cot 550^{\circ}=\frac{1}{\tan 550^{\circ}}=5.67$ (3 s.f.)
e $\cot \frac{4 \pi}{3}=\frac{1}{\tan \frac{4 \pi}{3}}=0.577$ (3 s.f.)
f $\sec 2.4 \mathrm{rad}=\frac{1}{\cos 2.4 \mathrm{rad}}=-1.36$ (3 s.f.)
g $\operatorname{cosec} \frac{11 \pi}{10}=\frac{1}{\sin \frac{11 \pi}{10}}=-3.24$ (3 s.f.)
h $\sec 6 \mathrm{rad}=\frac{1}{\cos 6 \mathrm{rad}}=1.04$ (3 s.f.)

3 a $\operatorname{cosec} 90^{\circ}=\frac{1}{\sin 90^{\circ}}=\frac{1}{1}=1$
(refer to graph of $y=\sin \theta$)
b $\cot 135^{\circ}=\frac{1}{\tan 135^{\circ}}=\frac{1}{-\tan 45^{\circ}}=\frac{1}{-1}=-1$
c $\sec 180^{\circ}=\frac{1}{\cos 180^{\circ}}=\frac{1}{-1}=-1$
(refer to graph of $y=\cos \theta$)
d 240° is in the 3 rd quadrant

$$
\sec 240^{\circ}=\frac{1}{\cos 240^{\circ}}=\frac{1}{-\cos 60^{\circ}}=\frac{1}{-\frac{1}{2}}=-2
$$

e 300° is in the 4th quadrant

$$
\begin{aligned}
\operatorname{cosec} 300^{\circ} & =\frac{1}{\sin 300^{\circ}}=\frac{1}{-\sin 60^{\circ}} \\
& =\frac{1}{-\frac{\sqrt{3}}{2}}=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

f -45° is in the 4 th quadrant

$$
\begin{aligned}
\cot \left(-45^{\circ}\right) & =\frac{1}{\tan \left(-45^{\circ}\right)}=\frac{1}{-\tan 45^{\circ}} \\
& =\frac{1}{-1}=-1
\end{aligned}
$$

g $\sec 60^{\circ}=\frac{1}{\cos 60^{\circ}}=\frac{1}{\frac{1}{2}}=2$
h -210° is in the 2 nd quadrant

$$
\begin{aligned}
\operatorname{cosec}\left(-210^{\circ}\right) & =\frac{1}{\sin \left(-210^{\circ}\right)} \\
& =\frac{1}{\sin 30^{\circ}}=\frac{1}{\frac{1}{2}}=2
\end{aligned}
$$

Pure Mathematics 3

3 i 225° is in the 3 rd quadrant

$$
\begin{aligned}
\sec 225^{\circ} & =\frac{1}{\cos 225^{\circ}}=\frac{1}{-\cos 45^{\circ}} \\
& =\frac{1}{-\frac{1}{\sqrt{2}}}=-\sqrt{2}
\end{aligned}
$$

j $\frac{4 \pi}{3}$ is in the 3 rd quadrant

$$
\cot \frac{4 \pi}{3}=\frac{1}{\tan \frac{4 \pi}{3}}=\frac{1}{\tan \frac{\pi}{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
$$

k $\frac{11 \pi}{6}=2 \pi-\frac{\pi}{6}$ (in the 4th quadrant)

$$
\sec \frac{11 \pi}{6}=\frac{1}{\cos \frac{11 \pi}{6}}=\frac{1}{\cos \frac{\pi}{6}}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
$$

l $-\frac{3 \pi}{4}$ is in the 3 rd quadrant

$$
\begin{gathered}
\operatorname{cosec}\left(-\frac{3 \pi}{4}\right)=\frac{1}{\sin \left(-\frac{3 \pi}{4}\right)}=\frac{1}{-\sin \frac{\pi}{4}} \\
=\frac{1}{-\frac{1}{\sqrt{2}}}=-\sqrt{2}
\end{gathered}
$$

$4 \operatorname{cosec}(\pi-x) \equiv \frac{1}{\sin (\pi-x)}$

$$
\equiv \frac{1}{\sin x}
$$

$$
\equiv \operatorname{cosec} x
$$

$5 \cot 30^{\circ} \sec 30^{\circ}=\frac{1}{\tan 30^{\circ}} \times \frac{1}{\cos 30^{\circ}}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{1} \times \frac{2}{\sqrt{3}} \\
& =2
\end{aligned}
$$

$6 \frac{2 \pi}{3}=\pi-\frac{\pi}{3}$ (in the 2 nd quadrant)

$$
\begin{aligned}
\operatorname{cosec}\left(\frac{2 \pi}{3}\right)+\sec \left(\frac{2 \pi}{3}\right) & =\frac{1}{\sin \left(\frac{2 \pi}{3}\right)}+\frac{1}{\cos \left(\frac{2 \pi}{3}\right)} \\
& =\frac{1}{\sin \left(\frac{\pi}{3}\right)}+\frac{1}{-\cos \left(\frac{\pi}{3}\right)} \\
& =\frac{1}{\frac{\sqrt{3}}{2}}+\frac{1}{-\frac{1}{2}} \\
& =-2+\frac{2}{\sqrt{3}} \\
& =-2+\frac{2}{3} \sqrt{3}
\end{aligned}
$$

Challenge

a Triangles $O P B$ and $O A P$ are right-angled triangles as line $A B$ is a tangent to the unit circle at P.
Using triangle $O B P, O B \cos \theta=1$
$\Rightarrow O B=\frac{1}{\cos \theta}=\sec \theta$
b $\angle P O A=90^{\circ}-\theta \Rightarrow \angle O A P=\theta$
Using triangle $O A P, O A \sin \theta=1$
$\Rightarrow O A=\frac{1}{\sin \theta}=\operatorname{cosec} \theta$
c Using Pythagoras' theorem,

$$
A P^{2}=O A^{2}-O P^{2}
$$

So, $A P^{2}=\operatorname{cosec}^{2} \theta-1$ $=\frac{1}{\sin ^{2} \theta}-1$
$=\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$=\cot ^{2} \theta$
Therefore $A P=\cot \theta$

