Pure Mathematics 3

Exercise 3A

1 a 300° is in the 4th quadrant

 $\sec 300^\circ = \frac{1}{\cos 300^\circ}$ In 4th quadrant cos is +ve, so sec 300° is +ve.

- **b** 190° is in the 3rd quadrant $\csc 190^\circ = \frac{1}{\sin 190^\circ}$ In 3rd quadrant sin is – ve, so $\csc 190^\circ$ is – ve.
- c 110° is in the 2nd quadrant $\cot 110^{\circ} = \frac{1}{\tan 110^{\circ}}$ In the 2nd quadrant tan is - ve, so $\cot 110^{\circ}$ is - ve.
- **d** 200° is in the 3rd quadrant tan is +ve in the 3rd quadrant, so cot 200° is+ve.
- e 95° is in the 2nd quadrant
 cos is ve in the 2nd quadrant,
 so sec 95° is ve.

2 a
$$\sec 100^\circ = \frac{1}{\cos 100^\circ} = -5.76$$
 (3 s.f.)

b
$$\operatorname{cosec} 260^\circ = \frac{1}{\sin 260^\circ} = -1.02 \; (3 \; \mathrm{s.f.})$$

c
$$\csc 280^\circ = \frac{1}{\sin 280^\circ} = -1.02 \ (3 \text{ s.f.})$$

d
$$\cot 550^\circ = \frac{1}{\tan 550^\circ} = 5.67 \ (3 \text{ s.f.})$$

e
$$\cot \frac{4\pi}{3} = \frac{1}{\tan \frac{4\pi}{3}} = 0.577 \ (3 \text{ s.f.})$$

$$\mathbf{f} \quad \sec 2.4 \, \mathrm{rad} = \frac{1}{\cos 2.4 \, \mathrm{rad}} = -1.36 \, (3 \, \mathrm{s.f.})$$

Solution Bank

g
$$\csc \frac{11\pi}{10} = \frac{1}{\sin \frac{11\pi}{10}} = -3.24 \ (3 \text{ s.f.})$$

h
$$\sec 6 \operatorname{rad} = \frac{1}{\cos 6 \operatorname{rad}} = 1.04 \ (3 \ \text{s.f.})$$

3 a
$$\csc 90^\circ = \frac{1}{\sin 90^\circ} = \frac{1}{1} = 1$$

(refer to graph of $y = \sin \theta$)

b
$$\cot 135^\circ = \frac{1}{\tan 135^\circ} = \frac{1}{-\tan 45^\circ} = \frac{1}{-1} = -1$$

c sec
$$180^\circ = \frac{1}{\cos 180^\circ} = \frac{1}{-1} = -1$$

(refer to graph of $y = \cos \theta$)

d 240° is in the 3rd quadrant

$$\sec 240^\circ = \frac{1}{\cos 240^\circ} = \frac{1}{-\cos 60^\circ} = \frac{1}{-\frac{1}{2}} = -2$$

300° is in the 4th quadrant

$$\operatorname{cosec} 300° = \frac{1}{\sin 300°} = \frac{1}{-\sin 60°}$$

$$= \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$$

f
$$-45^\circ$$
 is in the 4th quadrant
 $\cot(-45^\circ) = \frac{1}{\tan(-45^\circ)} = \frac{1}{-\tan 45^\circ}$
 $= \frac{1}{-1} = -1$

g
$$\sec 60^\circ = \frac{1}{\cos 60^\circ} = \frac{1}{\frac{1}{2}} = 2$$

h
$$-210^{\circ}$$
 is in the 2nd quadrant

$$\csc(-210^{\circ}) = \frac{1}{\sin(-210^{\circ})}$$
$$= \frac{1}{\sin 30^{\circ}} = \frac{1}{\frac{1}{2}} = 2$$

INTERNATIONAL A LEVEL

Pure Mathematics 3

3 i 225° is in the 3rd quadrant

$$\sec 225^{\circ} = \frac{1}{\cos 225^{\circ}} = \frac{1}{-\cos 45^{\circ}}$$
$$= \frac{1}{-\frac{1}{\sqrt{2}}} = -\sqrt{2}$$

j
$$\frac{4\pi}{3}$$
 is in the 3rd quadrant
 $\cot \frac{4\pi}{3} = \frac{1}{\tan \frac{4\pi}{3}} = \frac{1}{\tan \frac{\pi}{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

$$\mathbf{k} \quad \frac{11\pi}{6} = 2\pi - \frac{\pi}{6} \text{ (in the 4th quadrant)}$$
$$\sec \frac{11\pi}{6} = \frac{1}{\cos \frac{11\pi}{6}} = \frac{1}{\cos \frac{\pi}{6}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

1
$$-\frac{3\pi}{4}$$
 is in the 3rd quadrant
 $\csc\left(-\frac{3\pi}{4}\right) = \frac{1}{\sin\left(-\frac{3\pi}{4}\right)} = \frac{1}{-\sin\frac{\pi}{4}}$
 $= \frac{1}{-\frac{1}{\sqrt{2}}} = -\sqrt{2}$
S A
 $\frac{\pi}{4}$ A
 $\frac{\pi}{1}$ $-\frac{3\pi}{4}$
 $\cos \left(\pi - x\right) = \frac{1}{\sin(\pi - x)}$
 $= \frac{1}{\sin x}$

$$\equiv \csc x$$

4

5
$$\cot 30^\circ \sec 30^\circ = \frac{1}{\tan 30^\circ} \times \frac{1}{\cos 30^\circ}$$
$$= \frac{\sqrt{3}}{1} \times \frac{2}{\sqrt{3}}$$
$$= 2$$

Solution Bank

6
$$\frac{2\pi}{3} = \pi - \frac{\pi}{3}$$
 (in the 2nd quadrant)
 $\csc\left(\frac{2\pi}{3}\right) + \sec\left(\frac{2\pi}{3}\right) = \frac{1}{\sin\left(\frac{2\pi}{3}\right)} + \frac{1}{\cos\left(\frac{2\pi}{3}\right)}$
 $= \frac{1}{\sin\left(\frac{\pi}{3}\right)} + \frac{1}{-\cos\left(\frac{\pi}{3}\right)}$
 $= \frac{1}{\frac{\sqrt{3}}{2}} + \frac{1}{-\frac{1}{2}}$
 $= -2 + \frac{2}{\sqrt{3}}$
 $= -2 + \frac{2}{3}\sqrt{3}$

Challenge

a Triangles *OPB* and *OAP* are right-angled triangles as line *AB* is a tangent to the unit circle at *P*.

Using triangle *OBP*, $OB\cos\theta = 1$

$$\Rightarrow OB = \frac{1}{\cos\theta} = \sec\theta$$

b $\angle POA = 90^{\circ} - \theta \Longrightarrow \angle OAP = \theta$ Using triangle *OAP*, *OA*sin $\theta = 1$

$$\Rightarrow OA = \frac{1}{\sin\theta} = \csc\theta$$

c Using Pythagoras' theorem, $AP^2 = OA^2 - OP^2$ So, $AP^2 = \csc^2 \theta - 1$ $= \frac{1}{\sin^2 \theta} - 1$ $1 - \sin^2 \theta$

$$= \frac{\cos^2 \theta}{\sin^2 \theta}$$
$$= \frac{\cos^2 \theta}{\sin^2 \theta}$$
$$= \cot^2 \theta$$

Therefore $AP = \cot \theta$